

TRAINING GUIDE

Lucity Rest API

Lucity Web Services APIs
Lucity offers several web service APIs. This guide covers the Lucity Citizen Portal API as well as the
Lucity REST API.

Contents

Configuration and Installation... 2
Installation .. 2

Configuration ... 3
Basics .. 4
Working with Data ... 6

Getting Data using a browser .. 6
Getting Data using javascript .. 7
Posting Data (creating data) using javascript ... 8
Putting Data (updating data) using javascript .. 9
Getting Data using C# ... 10
Posting (Creating) Data using C# .. 12

Key Concepts ... 13
Formats (json, XML) ... 13
Special Requirements for XML ... 13
Errors ... 13
Expected return codes and behavior ... 14
Lists ... 14
ETags ... 15
Query Parameters .. 15

Special Functions .. 16
Getting Record Counts: $count .. 16
Getting pick lists: {PropertyName}/ and {PropertyName}/$count .. 16
Getting a new empty object: $new ... 16
Getting metadata: $fields .. 17
Working with Existing Filters: $filters and $myfilters ... 17
Clearing Cached Data: $cache ... 18

Other Notes ... 18
Launching Lucity Applications from another application ... 18

Launching the Lucity Desktop Application from Javascript .. 18

Launching the Lucity Web Application using a URL .. 19

2

Lucity REST API

Configuration and Installation

Installation
Both REST APIs are available on the standard install media

The Citizen REST API is designed for customer facing applications and requires no authentication. It
contains features such as:

• Creating new requests

• Viewing Existing Requests

• Blocking view of Personally Identifiable Information (PII). It will not serve up any data that has
been assigned as PII data. By default this includes things like requestors name, requestors
address, requestors email.

• Only serves data that has been marked publically accessible. Every request in Lucity has a flag
that identifies whether it should be available for public query. By default all requests that
were submitted through the Lucity Citizen Portal REST API have this flag turned on.

• Can auto-reproject coordinates to and from your agency’s operational spatial reference (useful
when getting data submitted from 311 systems which use Bing or Google or other maps)

The REST API is designed for internal use applications (GIS, financial integrations, etc.). It requires
authentication and used Basic authentication to provide the credentials to the server. For this reason
we recommend SSL with this application.

• Supports viewing data from many different Lucity modules

• Supports creating data in many different Lucity modules

• Supports updating data from many different Lucity modules

• Supports deleting data from many different Lucity modules

• Adheres to the user’s security profile. If a user is not allowed to delete a work order in Lucity,
then they cannot delete the work order in the REST API either.

3

Lucity REST API

• Supports a wide range of meta data and extra endpoints that may be useful beyond simple
Lucity modules such as :

o Filters

o Field Meta Data

o GIS Configuration Data

Configuration
Several Configuration options are available through System Settings

The Default Public REST WKID allows you to specify that all requests coming in through the Citizen
Portal REST API should be assumed to be in a certain coordinate system (for example, Mercator). ESRI
documentation provides a full list of available WKID values. This system setting goes hand in hand with
the “Use an alternate coord system as the Default Coordinate System for Public Requests” setting.
Alternately, if some clients are inserting data using Mercator and some clients are using an alternate
coordinate system, the client can include criteria in each call that tells the REST API what the
coordinate system is. To do this, include a query param COORDSYS= MERCATOR or COORDSYS=LOCAL.

By default, the REST APIs provide rudimentary denial of service (DOS) protection. If a single IP address
makes more than 1000 requests in 10 minutes, the system will not accept requests from that IP
address. The number of requests and the number of minutes is also customizable but must be done in
the appSettings.config file on the server. The names of the app settings that are applicable are
DOSREQUESTS
 and DOSPERIOD. The latter value is in minutes. To disable the DOS protection for the REST API,
change the Disable DOS protection setting to TRUE in the Lucity System Settings.

Maximum records to return limits the total number of records that may be returned on any one REST
call. By default, 10 records are returned, but the client can request more records. This system setting
sets a cap on how many total records can be returned in one call.
Use extensionless URLs allow prettier URLs if that is something you care about. By default URLs will be
like this:

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/55555/TaskList/
With this option set to TRUE the URL will look like this:
http://restapi.lucity.net/gbaMS/Work/WorkOrders/55555/TaskList

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/55555/TaskList/
http://restapi.lucity.net/gbaMS/Work/WorkOrders/55555/TaskList

4

Lucity REST API

Basics
The Lucity REST API uses GET, PUT, POST, and DELETE to perform a variety of actions on resources in
Lucity. A resource can be a work order, it can be a list of work orders, it can be a work order task, it
can be a hydrant, etc.

The URL for the web services is composed of the server where it is installed (potentially an alias
instead) and the virtual directory (also can be aliased).

http://server/virdir/

Or for example:

http://restapi.lucity.net/gbaMS/ (this is a live functioning link)

The entry page includes a list of all of the available root level resources. There are LOTS of them:

The list goes on.

Note:___

http://server/virdir/
http://restapi.lucity.net/gbaMS/

5

Lucity REST API

Drilling into one of these resources will provide details on what can be done with that resource.

Drilling into the individual help requires authentication, so the browser will prompt for a user name
and password. This is your Lucity user name and password. A small snippet of the available actions is
shown here:

Again, there are lots. Drilling into an individual GET link will show what format it is expecting the data
in. This may or may not be useful depending on the planned development platform. Developers using
.NET should use the serialization objects we provide and not worry about manually writing XML or json.

6

Lucity REST API

Working with Data

Getting Data using a browser
This mostly proves the service can be reached. There probably is no real life application here, but it
does provide troubleshooting help.

Unfortunately there is no pretty json option, but XML is available which renders better when viewing
data like this:

7

Lucity REST API

Getting Data using javascript
There are many different methods of getting the data using javascript and a lot of helper libraries out
there. These samples use jQuery and one of the lower level functions called .ajax. Because of cross
origin concerns, the jQuery.support.cors variable is set to true so that jQuery knows that it is okay
to send an http request to a server other than the one serving up this web page.

<script language="javascript">

 function getdetails()
 {

 //tell jQuery you are going to use cross origin requests (if necessary)
 jQuery.support.cors = true;

 var url = http://restapi.gbams.net/gbaMS/Work/WorkOrders.svc/" +
$('#woid').val() + "?format=json";

 jQuery.ajax({
 type: "GET",
 url: url,
 username: $('#username').val(),
 password: $('#password').val(),
 success: function (data)
 {

 $('#wonum').val(data.WorkOrderNumber);
 $('#woid').val(data.AutoNumber);
 $('#categorycode').val(data.CategoryCode);
 $('#actioncode').val(data.MainTaskCode);
 $('#supervisorcode').val(data.SupervisorCode);

 getanddisplaycomments(workorderId);

 },
 error: function (XMLHttpRequest, textStatus, errorThrown)
 {
 if (XMLHttpRequest.status == "404")
 alert("Work Order does not exist");
 else if (XMLHttpRequest.status == "401")
 alert("Invalid credentials");
 else
 alert("Error ->" + XMLHttpRequest.status + " " +
XMLHttpRequest.responseText.Description);
 }
 });

 }

 </script>

8

Lucity REST API

Posting Data (creating data) using javascript
<script language="javascript">

 function addComment(workorderId)
 {

 var params = "{\"Comment\":\"" + $('#comments').val() + "\"}";
 var url = http://restapi.gbams.net/gbaMS/Work/WorkOrders.svc/" + workorderId
+ "/CommentList/?format=json";

 jQuery.ajax({
 type: "POST",
 url: url,
 username: $('#username').val(),
 password: $('#password').val(),
 data: params,
 contentType: "application/json",
 success: function (data)
 {
 getanddisplaycomments(workorderId);
 },
 error: function (XMLHttpRequest, textStatus, errorThrown)
 {
 handleError(XMLHttpRequest);
 }
 });

 }

 </script>

Notes:___

9

Lucity REST API

Putting Data (updating data) using javascript
<script language="javascript">

 function update()
 {

 var params = "{\"CategoryCode\":\""
 + $('#categorycode').val()
 + "\",\"MainTaskCode\":\""
 + $('#actioncode').val()
 + "\",\"SupervisorCode\":\""
 + $('#supervisorcode').val() + "\"}";

 var url = urlmain + "WorkOrders.svc/" + $('#woid').val() + "?format=json";

 jQuery.ajax({
 type: "PUT",
 url: url,
 username: $('#username').val(),
 password: $('#password').val(),
 data: params,
 contentType: "application/json",
 success: function (data)
 {
 $('#woid').val(data.AutoNumber)
 getdetails();
 },
 error: function (XMLHttpRequest, textStatus, errorThrown)
 {
 handleError(XMLHttpRequest);
 }
 });

 }
 </script>

Notes:___

10

Lucity REST API

Getting Data using C#
There are also several ways to make HTTP requests with C#. The following gets a list of requests and
outputs it to the console window (it will show up as a mess of XML text). It will only return the 10 most
recent requests. There is a very similar sample to the below in the ConsoleApplication sample in the
DesktopSamples solution.

var url = "http://restapi.lucity.net/Public/Work/Requests.svc/";

using (HttpClient client = new HttpClient())
{
 using (HttpRequestMessage request = new HttpRequestMessage(method, url))
 {
 request.Headers.Accept.Add("application/xml");

 using (HttpResponseMessage response = client.Send(request))
 {
 if (response.Content.HasLength() && response.Content.GetLength() >
0)
 {
 using (StreamReader reader = new
StreamReader(response.Content.ReadAsStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
 }
 }
 }
}

This is not ideal for working with the data, so a better way is to deserialize the XML into an object that
you can work with. We can provide these basic objects to make it easier to work with the data client
side. Here is an example partial object:

 public class WorkOrder
 {
 public string AccountNumber { get; set; }
 public string AreaCode { get; set; }
 public string AreaType { get; set; }
 public int? AssetInventoryID { get; set; }
 public string AssignedByCode { get; set; }
 public string AssignedByType { get; set; }
 public string AssignedCrewCode { get; set; }
 public string AssignedCrewType { get; set; }
 public DateTime? AssignedDate { get; set; }
 public DateTime? AssignedTime { get; set; }
 public int? AutoNumber { get; set; } ……
 }
 public class ArrayOfWorkOrder: List<WorkOrder>
 {
 }

The objects we provide also include some attributes that assist with serialization not shown in the
above clip. They are included in a series of C# projects (or compiled dlls) called
Lucity.*.SerializationObjects.

11

Lucity REST API

These objects are current as of whenever you downloaded them from our site. It is not necessary to
update these client side objects with each release. You only need to update the objects if there is a
new property you want to take advantage of in the new release.

The following example uses WebClient instead of HttpClient and deserializes the data into a collection
object and then binds a grid on a windows form to the collection. This is part of
SimpleWindowsFormsWorkOrderSample in the DesktopSamples solution.

 WebClient client = new WebClient();
 client.UseDefaultCredentials = false;
 client.Credentials = new NetworkCredential(textBoxUserName.Text,
textBoxPW.Text);

 string data = null;
 try
 {
 data =
client.DownloadString("http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/");
 }
 catch (WebException ex)
 {
 MessageBox.Show(ex.Message);
 }

 System.Xml.Serialization.XmlSerializer xml = new
System.Xml.Serialization.XmlSerializer(typeof(ArrayOfWorkOrder));
 dataGridView1.DataSource = (ArrayOfWorkOrder)xml.Deserialize(new
System.IO.StringReader(data));

Notes:___

12

Lucity REST API

Posting (Creating) Data using C#
This example creates a Request object (available in the Lucity.Work.Serialization project or assembly)
and serializes it posting the data to the server to create a new request. The results of the operation
are written to a list box called Results. This sample is part of SimpleWindowsFormsWorkOrderSample
in the DesktopSamples solution.

 Request complaint = new Request();
 complaint.ProblemCode = comboBoxProblem.SelectedValue.ToString();

 //creates a new request using some helper methods
 XmlSerializer ser = new XmlSerializer(typeof(Request));
 System.IO.MemoryStream stream = new System.IO.MemoryStream();
 System.Xml.XmlTextWriter xmlWriter = new System.Xml.XmlTextWriter(stream,
Encoding.UTF8);
 ser.Serialize(xmlWriter, complaint);
 xmlWriter.Flush();
 stream.Seek(0, System.IO.SeekOrigin.Begin);

 WebClient client = new WebClient();
 client.Headers.Add("Content-Type", "text/xml");
 client.Encoding = System.Text.Encoding.UTF8;
 client.UseDefaultCredentials = false;
 client.Credentials = new NetworkCredential(textBoxUserName.Text,
textBoxPW.Text);

 try
 {
 string dataForUpload = Encoding.UTF8.GetString(stream.ToArray());
 string result = client.UploadString(new
Uri("http://restapi.lucity.net/gbaMS/Work/Requests.svc/"), "POST", dataForUpload);
 Request req = (Request)ser.Deserialize(new
System.IO.StringReader(result));

 Results.Items.Add(String.Format("New Request Created: {0}, Number: {1}",
req.AutoNumber, req.RequestNumber));

 }
 catch (WebException exc)
 {
 MessageBox.Show(string.Format("Failed to submit request. {0}",
exc.Message));
 }
There are many more samples including asynchronous options and WPF available in the DesktopSamples
Solution.

Notes:___

13

Lucity REST API

Key Concepts

Formats (json, XML)
Two formats are supported with the REST APIs: json and xml. Each request must include the format in
the query string of the url (the default format is xml, so technically it is only required for json
requests).

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?format=json

Returns data in json

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?format=xml or

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/

Returns data in xml.

For posting and putting (creating and updating) data, the format must be included both in the query
string

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?format=json

And in the Content-Type of the request header. The content type for json is "application/json" or
"text/javascript" and the content type for xml is "text/xml".

Special Requirements for XML
It is not necessary to include all properties on an object when posting. If you are using the Lucity
serialization objects and serializing them that will just happen automatically, but if you are manually
building XML it is perfectly acceptable to include just the properties you want to update or insert. For
example, a request can be inserted with the following body:

<Request><ProblemCode>test</ProblemCode></Request>

Which will insert a new request with the problem code = test.

What is required, however, is that whatever properties are included are listed in alphabetical order.
Again, if you are using the Lucity Serialization objects this is irrelevant.

Errors
The Lucity REST API tries to follow the HTTP standard for errors. The following is a table of errors that
could be returned:

401
UNAUTHORIZED

The user likely did not provide credentials. The Lucity REST API will issue a
challenge which will cause most browsers (if the client is a javascript client) to
prompt for username and password. If you get this prompt, most likely you did
not provide credentials or did not handle a 401 error from the client.

404
NOT FOUND

The requested record was not found or the client made a request to a URL that
does not exist and should consult the help listing for available endpoints. For
example http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/help contains
the available endpoints for Work Orders.

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?format=json
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?format=xml
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?format=json
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/help

14

Lucity REST API

400
BAD REQUEST

The client application requested something that the server considers invalid.
This could be a problem in the formatting of the data sent to the server, it
could be that the data sent to the server causes a rules violation (like an
invalid problem code). 400 Errors will generally include a description of the
problem.

500 This is a server error. Check the logs on the server for the reason for the error.
Typically these errors will show up both in the rolling.log and in the event
viewer on the web server.

412
PRECONDITION
FAILED

On a PUT or DELETE, if the client includes an If-Match header and the ETAG
does not match with the current version in the database, this error will be
returned. This protects from overwriting another user’s data, but is
completely optional and the client system is responsible for including the
header if this behavior is desired.

405
METHOD NOT
ALLOWED

This is returned if the client has requested to do something we do not support.
For example, if a user tries to delete a request using the Lucity Citizen Portal
REST API.

Expected return codes and behavior
Return status codes and headers also follow HTTP standards. The following are the possible return
codes you will see developing with the REST API.

200
OK

A GET request will return this code if there were no problems with the request.
There will be returned in the body of the response. A PUT will also return this
status code if it was successful and will return a copy of the object in the body
of the response as it currently exists in the database (this might include data
changed after calculations, additional defaults, etc.).

201
CREATED

A POST request that creates a new record will return this status code and will
return the copy of the object in the body of the response as it currently exists
in the database.

204
NO CONTENT

A DELETE request that successfully deletes a record will return this status code.
The body of the response will be empty.

304
NOT MODIFIED

A GET response which includes an ETAG may return a 304 not modified if the
object in the database has not been modified since the original ETAG was
issued.

Lists
All lists will have a trailing backslash (query parameters go after the slash however). For example:

List of work orders and a list of work orders that are in a designated filter

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?FilterId=123

List of available code types for MainTaskCode

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/MainTaskCode/

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/?FilterId=123
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/MainTaskCode/

15

Lucity REST API

ETags
ETags are returned on all GET that return a single record as well as all PUT and POST requests. The
system will respect ETags for GETS, PUTS, and DELETES.

For example, if a GET on a single work order is issued and it includes a header with the following:

If-None-Match: "686897696a7c876b7e"

The Lucity REST API will check the version of the work order in the database, if it matches the version
provided in this ETAG, the Lucity REST API will return a 304 NOT MODIFIED.

For Updates, ETAGS can be used to make sure that one user does not overwrite another user’s data.
If, on a PUT, the following is included on the header:

If-Match: "686897696a7c876b7e"

The Lucity REST API will only make the requested update if the version of the record in the database
matches the provided ETAG.

Query Parameters
The following query parameters are supported (not all requests support all query parameters)

FILTER Filter string which should general include a table name. For example:
Filter=WKREQ WHERE RQ_STAT_CD < 950 (provided unencoded here for
clarity)

FILTERID Filter Id that should be used to filter the data. Each module has a list of
canned or predefined filters that have been saved by users. This is the
AutoNumber that represents that saved filter. These filters are available as
a list that you can show users (See Special Functions).

ORDERBY The property or field name that the data should be sorted by. This is the
autonumber property by default (descending order). For example:
OrderBy=StatusCode+DESC

TAKE Designates how many records should be returned. By default 10 will be
returned. The max is limited based on the Lucity Administrator assigned
max in Lucity System Settings (max is defaulted to 50).

SKIP Designates how many records to skip. For example, to get the second set
of 15 records, the Skip = 15 and the Take = 15. Skip MUST be divisible by
Take. You cannot request Skip = 20 and Take = 15. This will result in a 400
Bad Request error.

FORMAT format=json or format=xml. The default is xml.
STARTSWITH This is a special query parameter only available for certain lookup lists such

as category, problem, or standard code type values. For example:
STARTSWITH=a will return all code types where the code (and in some
cases the type) starts with an a.

COORDSYS This is a special query parameter only used with the Citizen Portal REST
API. See documentation on configuration for a discussion on this
parameter. Available options are COORDSYS=LOCAL, COORDSYS=MERCATOR

16

Lucity REST API

Special Functions

Getting Record Counts: $count
This keyword will always occur after a trailing slash and can include query parameters. It will return
the total record count (with respect to the supplied query parameters).

GET http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$count

Returns a count of all work orders

GET
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$count?Filter=WKORDER+WHERE+WO_STAT_CD
%3C950

Returns a count of all open work orders (where WO_STAT_CD < 950)

GET http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/MainTaskCode/$count

Returns a count of all available code type values for MainTaskCode on a work order.

Getting pick lists: {PropertyName}/ and {PropertyName}/$count
Fields that are pick lists (code types, problem codes, time codes, category codes, etc.) have a special
endpoint that can return all of the valid pick list items. The format of the URL is

http://restapi.lucity.net/[Program]/[Module].svc/[Optionally the Child List]/[PropertyName]

For example:

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/PriorityCode/

Return all available priority codes.

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/WorkOrderTaskList/UnitofMeasureCode/

Returns all available unit of measure values for the tasks on work orders. Property names are case
sensitive on these requests.

Work flow code types (such as problem, cause, and task) also follow this convention. All available
problems which can be assigned to a work order are at this endpoint:

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/MainTaskCode/

It is also possible to get a list of only the items associated to a specific category.

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/CategoryCode/01000/MainTaskCode/

Returns all main task codes associated to a category with category code = 01000

Getting a new empty object: $new
To get a new object with all defaults populated use the $new keyword.

GET http://restapi.lucity.net/gbaMS/Work/Requests.svc/$new

Returns a request object with all of the defaults populated (such as status code and any other custom
defined defaults as well). This call makes no changes to the data on the server.

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$count
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$count?Filter=WKORDER+WHERE+WO_STAT_CD%3C950
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$count?Filter=WKORDER+WHERE+WO_STAT_CD%3C950
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/MainTaskCode/$count
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/PriorityCode/
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/WorkOrderTaskList/UnitofMeasureCode/
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/MainTaskCode/
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/CategoryCode/01000/MainTaskCode/
http://restapi.lucity.net/gbaMS/Work/Requests.svc/$new

17

Lucity REST API

Getting metadata: $fields
To get metadata about fields such as the user defined display name, maximum mask, field type,
whether it is required or read-only, use the $fields keyword.

For example:

http://restapi.lucity.net/gbaMS/Work/Requests.svc/$fields

Returns all of the properties and fields on a request and details about each field:

Working with Existing Filters: $filters and $myfilters
To let a user pick from a list of existing filters, use the $filters and $myfilters keyword. This keyword
supports query parameters StartsWith, Skip, and Take.

For example:

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters

Returns all Work Order filters for the currently logged in user

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$filters

Returns all Work Order filters for all users

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters/$count

Returns a count of all filters available for the currently logged in user

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters/$count?StartsWith=A

Returns a count of all filters for the currently logged in user that start with A. and the following syntax
returns these filters

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters?StartsWith=A

http://restapi.lucity.net/gbaMS/Work/Requests.svc/$fields
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$filters
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters/$count
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters/$count?StartsWith=A
http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$myfilters?StartsWith=A

18

Lucity REST API

Clearing Cached Data: $cache
Lucity caches certain data to make lookups faster and to reduce the load on the database server. This
includes things like pick list values, field properties, as well as others.

The REST APIs are stateless web service applications. Restarting the app pool will not upset current
users other than causing a very small delay the next time a request is made. However, restarting the
app pool is not always realistic and is not possible directly from a client application.

It is possible to force a cache to clear on the REST API server from a client application using the $cache
keyword and the DELETE method.

DELETE http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$cache

Will clear the caches that are associated with the Work Order objects. This should return a 204 NO
CONTENT if the cache clear was successful.

Other Notes
The REST API currently will currently not overwrite valid values with null values (even if that is the
desired outcome).

Launching Lucity Applications from another application
While not directly related to the Lucity REST APIs, launching the Lucity desktop or the Lucity Web
applications to display a specified record or filter is a common need.

Launching the Lucity Desktop Application from Javascript
Lucity provides an Acitve X control that can be used to launch the Lucity Desktop application using
javascript or another language. Only Internet Explorer has built in support for interacting with Active X
controls.

There are several pieces of information you need to launch the Lucity desktop software to a specific
record from javascript.

a. Client identifier: Lucity uses a concept of client numbers. It is how we distinguish between
different sets of databases at a single client site (test, production, development, etc). Usually
the client number for the default production client will be “clint001” but in theory it could be
“clint002”, “clint003”, etc.

b. User Name: This is the Lucity logon Id that you want used when Lucity opens. It needs to be the
logon Id for the current user. This logon Id cannot be shared across multiple users. You would
likely need to prompt the user in some way to get this Id. It is the same User Id that is used when
authenticating to the Lucity REST API. No password is required here, however.

c. Module Path: This is a string that identifies which module you want to open. It is in the format
[Program Name]//[[Module Name]]. There is a comprehensive list of these in the MODULES table
in the GBAUser database. The Program Name value comes from the Program_Name field. The
Module Name comes from the Module_Name field. Here is the string for Work Orders
 “Work//WKOrder”

http://restapi.lucity.net/gbaMS/Work/WorkOrders.svc/$cache

19

Lucity REST API

d. filterString: This is the filter that defines what you want to see in the desktop software. So if you
want to see one specific work order Id your filter string would be “WKORDER WHERE WO_ID = [the
Id you want to see]”. This is basically everything after the “FROM” in a sql statement.

 function launchLucityClient(filterString, modulePath, client, userName)

{

 document.body.style.cursor = 'wait';

 var lucityClient = new ActiveXObject('GBAIntegEXE.cGBAIntegOutofProcess');

 lucityClient.Initialize(client, userName);

 lucityClient.View(modulePath, filterString);

 document.body.style.cursor = 'default';

}

 Example usage that opens the Work Order module to a work order id of 1212

launchLucityClient("WKORDER WHERE WO_ID = 1212", "Work//WKOrder",
"clint001","JOE_USER");

Launching the Lucity Web Application using a URL
The following information is required to open the web software:

lucityWebUrl: This is the url to the Lucity Web application

moduleId: This is the module Id for the module you want to open. A comprehensive list of module Ids
is available in the KeyId field of the Modules table in the GBAUser database. The module Id for work
orders is 48.

filterString: This is the filter string for the module you want to open. For example, to open work order
1212 the string would be WKORDER WHERE WO_ID = 1212

tabName: This is a simple string that describes what you are showing. It is the tab name that is used
when displaying the data to the user.

This is the url:

[lucityWebUrl]/Public/Routing.aspx?RouteTarget=Internal&RouteSubTarget=Views&RouteAction=OpenD
efault&RouteParam1=[moduleId]&RouteParam2=[tabName]&RouteParam3=[filterString]

(*note that the above URL is not shown encoded. You may want to encode the URL)

 Example usage that opens work orders to a work order Id of 1212

http://demo.lucity.net/LucityWeb/Public/Routing.aspx?RouteTarget=Internal&RouteSubTarget=Views
&RouteAction=OpenDefault&RouteParam1=48&RouteParam2=My+Work+Order&RouteParam3=WKORDER
+WHERE+WO_ID%3D1212&end=true

http://demo.lucity.net/LucityWeb/Public/Routing.aspx?RouteTarget=Internal&RouteSubTarget=Views&RouteAction=OpenDefault&RouteParam1=48&RouteParam2=My+Work+Order&RouteParam3=WKORDER+WHERE+WO_ID%3D1212&end=true
http://demo.lucity.net/LucityWeb/Public/Routing.aspx?RouteTarget=Internal&RouteSubTarget=Views&RouteAction=OpenDefault&RouteParam1=48&RouteParam2=My+Work+Order&RouteParam3=WKORDER+WHERE+WO_ID%3D1212&end=true
http://demo.lucity.net/LucityWeb/Public/Routing.aspx?RouteTarget=Internal&RouteSubTarget=Views&RouteAction=OpenDefault&RouteParam1=48&RouteParam2=My+Work+Order&RouteParam3=WKORDER+WHERE+WO_ID%3D1212&end=true

	Lucity Rest API - Cover
	Lucity REST API Handout
	Configuration and Installation
	Installation

	Configuration
	Basics
	Working with Data
	Getting Data using a browser
	Getting Data using javascript
	Posting Data (creating data) using javascript
	Putting Data (updating data) using javascript
	Getting Data using C#
	Posting (Creating) Data using C#

	Key Concepts
	Formats (json, XML)
	Special Requirements for XML
	Errors
	Expected return codes and behavior
	Lists
	ETags
	Query Parameters

	Special Functions
	Getting Record Counts: $count
	Getting pick lists: {PropertyName}/ and {PropertyName}/$count
	Getting a new empty object: $new
	Getting metadata: $fields
	Working with Existing Filters: $filters and $myfilters
	Clearing Cached Data: $cache

	Other Notes
	Launching Lucity Applications from another application
	Launching the Lucity Desktop Application from Javascript
	Launching the Lucity Web Application using a URL

